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Abstract— Three-dimensional analytical solutions of the atmospheric diffusion equation with multiple
sources and height-dependent wind speed and eddy diffusivities are derived in a systematic fashion. For
homogeneous Neumann (total reflection), Dirichlet (total adsorption), or mixed boundary conditions, the
solutions for a single source are comprised of three components: a source strength, a crosswind dispersion
factor, and a vertical dispersion factor. The two dispersion factors together constitute a Green’s func-
tion— the concentration response due to a unit disturbance (source). When the general point source Green’s
functions are derived for a bounded domain (inversion effect) with various boundary conditions and
arbitrary power-law profiles for wind speed and eddy diffusivities, previously published equations are found
to be simplified versions of this more general case. A methodology based on the superposition of Green's
functions is proposed, which enables the estimation of ambient concentrations not only from a single
source, but also from multiple point, line, or area releases.
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line source.

NOTATION K, lateral eddy diffusivity, L2t™!
K. vertical eddy diffusivity, L2t™!

® power-law constant of wind profile, di- ™ transformed variable from M(zo)
mensionless M(zo) function used to separate variables

B power-law constant of vertical eddy Nixq) function used to separate variables
diffusivity profile, dimensionless n number of total emission sources, di-

7 power-law constant of lateral eddy dif- mensionless
fusivity profile, dimensionless P Fourier variable ]

a parameter in power-law wind profile. v emission strength of point source,
L' 2! Mt _

b parameter in power-law vertical eddy % emission strength  of  line source,
diffusivity profile, L2 #t ! ML™ "t

B length of line source, 1 Q. emission strength of area source,

T -2 1

C(x, y, 2) ambient concentration of the con- . ML "%t . e s
taminant, ML ~3 S source term in atmospheric diffusion

C,,C; C5,C,, Cs  constants equation )

fx) integrable function in lateral eddy dif- | transformed va{llable from z,

‘ fusivity profile, L2 ¢~ v wind speed, Lt ™" .

G,(x, v; x5, V5) crosswind sub-Green function. L' for %o constant defined in equation (A22)
point source, dimensionless for line Wi constant defined in equation (A24)
source X,y z Cartesian coordinates in downwind,

J(x, z; x§, z5) vertical sub-Green function, L "t crosswind, and vertical directions (pos-

G,(xo, p; X, ) Fourier transformation of itive upwards), respectively, L
G,(xo. yo: X. ¥) with respect to y, Xa. ¥o: T independent variables, L

H inversion hefghl L ’ X§. 35, 5§ location of the ith point source, L

i superscript, index for the ith source, Y5 ¥si 2 location of the ith linc source, L
dimensionless X, some location in the Cartesian coordi-

i subscript. index for eigenvalues, dimen- . natexsystem, L et
sionless X = [Z flr)dr, L* ™t

ki, ko, ks constants X _ j‘;‘gﬂr)dn Li-ag !

b reference height where measurements
are taken, L
* Corresponding author. erf error function
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—

modificd Bessel function of the first
kind

Bessel function of the first kind

Dirac delta function

gamma function

argument of a function

separation constant

eigenvalue, dimensionless

= (1 — BY/(x — B + 2), dimensionless
=2 /Ma/b/la — f+2)

variables in equation (A31)

standard deviation (diffusion coeffic-
ient), L

mean square particle displacement, L*
dummy variable in integral
differential source length. L
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1. INTRODUCTION

The atmospheric diffusion equation (e.g., Seinfeld,
1986) has long been used to describe the transport of
airborne pollutants in a turbulent atmosphere. Air
dispersion models based on its analytical solutions
possess several advantages over numerical models,
because all the influencing parameters are explicitly
expressed in a mathematically closed form. The effect
of the individual parameters on the model results can
therefore be easily investigated (Nieuwstadt, 1980).
Analytical solutions are also useful for examining the
accuracy and performance of the numerical models
(Runca and Sardei, 1975; Liu and Seinfeld, 1975;
Runca, 1982). Thorough studies of the analytical solu-
tions allow valuable insights to be gained regarding
the behavior of a system.

An analytical solution that has received much
attention and has been studied extensively is the
Gaussian plume equation, which assumes that wind
speed and turbulent eddies are invariant with height.
Despite its popularity, studies have shown that its
applicability is quite limited. For example, though
a good approximation in the lateral direction
(Pasquill and Smith, 1983), a simple Gaussian
profile is not found in the vertical direction for
a ground-level release or for an elevated release
under unstable conditions (Deardorff and Willis,
1975; Willis and Deardorff, 1976; Nieuwstadt and van
Ulden, 1978; Gryning et al., 1983; Briggs, 1985). Hin-
richsen (1986) compared a non-Gaussian analytical
model which uses power-law profiles to represent
vertical variations in wind speed and turbulence with
three Gaussian-type models, and found that the
non-Gaussian model agreed better with the observed
data.

Analytical solutions of the atmospheric diffusion
equation with wind speed and eddy diffusivities ex-
pressed as power functions of height have been spor-
adically found in the literature since the 1950s. Early
solutions (Rounds, 1953; Smith, 1957; Walters, 1957)
either dealt with only two dimensions, used restricted
conjugate power laws, or neglected the inversion
effect. By utilizing the Green's function method
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(Stakgold, 1968), Yeh (1975) derived solutions for the
three-dimensional advection—diffusion equation un-
der boundary conditions corresponding to both
bounded (inversion) and unbounded (infinite mixing
layer) domains. These equations have subsequently
been used in dispersion models for an unbounded
domain (Yeh and Huang, 1975; Huang, 1979). De-
muth’s work (1978), which corrected a mistake in
Rounds’ solutions (1955) for a bounded domain, also
has been utilized in dispersion modeling (Tirabassi
er al., 1986; Tirabassi, 1989). All of these applications
have been restricted to a single isolated point source
located at the origin, and limited to total reflection
at the boundaries (Neumann-type boundary condi-
tions).

Since actual ground-level concentrations of air
pollutants most often fall between Dirichlet (total
adsorption) and Neumann types, and since multi-
ple-source dispersion modeling is still done almost
exclusively using the Gaussian plume model, the ob-
jectives of this paper are two-fold: (1) to systematically
derive the solutions of the atmospheric diffusion
equation for several boundary condition types;
and (2) to apply the Green’s function concept
(Roach, 1970; Greenberg, 1971; Stakgold, 1979; Beck
et al., 1992) to the multiple-source problem, where the
sources can be located anywhere in the region of
interest.

2. ATMOSPHERIC DIFFUSION EQUATION

The steady-state transport of a non-reactive con-
taminant released continuously from n point sources
located at (xd, yd,z8), (x2, y2,23), ..., (x3, y2,28) in
a Cartesian coordinate system can be described by the
following partial differential equation:

oC(x,y,2) _ 0 oC(x, y, 2)
N (Ky(*’ <52
e 0C(x, y, z)
+= (K,(z) — )

™=

+ Y Q0(x — x5) 8(y — y8)d(z — z5)

i

]

1

where C(x, y, z) is the ambient concentration of the
contaminant, Q' is the emission strength of the ith
source located at (x£, yi, z£), and J is the Dirac delta
function. In deriving the above atmospheric diffusion
equation, the wind is assumed to be blowing in the
x-direction, the turbulent fluxes are approximated by
gradient transport (K-theory), and the turbulent diffu-
sion in the wind direction is neglected compared to
advection (slender plume approximation). These ap-
proximations are valid when the scale of the turbulent
transport is smaller than the plume dimensions (Pas-
quill and Smith, 1983; Seinfeld, 1986). In addition,
wind speed, U(z), and the eddy diffusivities, K,(x, z)
and K,(z), are assumed to vary with height, and will
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be approximated by the following power laws:

U(z) = U(z,)(é)a oz, =)

“r

Kx,zy =f(x)z”

where U(z,) and K,(z,) are the measured wind speed
and vertical eddy diffusivity at a reference height z,,
f(x) is any integrable function of x, and a, b, «, B, y are
constants that depend on atmospheric stability and
surface roughness.

3. BOUNDARY CONDITIONS

Depending on the interactions between the plume
emissions and the bounding surfaces, the homogene-
ous boundary conditions can be of four types (where
H is the height of inversion layer):

Neumann type (total reflection)
0C(x, y, 2)

boundaries should fall inbetween the Neumann and
Dirichlet cases. We will not evaluate the Robin
boundary type in this paper, but will consider it in
a separate paper.

The other boundary conditions stipulate that con-
centrations drop to zero far away from the domain:

C(‘x,,sz):O’ C(X, ioo,z)=0, C(X,Y»OO)=O'

4. ANALYTICAL SOLUTIONS

The above boundary value problem for a non-
reactive pollutant can be solved analytically if o =7
(ie., U and K, have the same, but arbitrary, power-
law dependence on height). Following the procedures
of Yeh and Huang (1975) and Yeh (1975) for a single
isolated source, the solutions are comprised of three
components: a source strength @', a vertical disper-
sion factor G'(x, z; x&, z5), and a crosswind dispersion
factor Gi(x, y; x&, y§):

Dirichlet type (total adsorption)

K.(2) 2 =0 atz=0 Clx.y.2)=0 atz=20
K,(z)w=0 atz=H Cix,y,z=0 atz=H
Mixed type 1 Mixed type 11
K,(z)ai);’zy:i)=0 atz =0 Clx,y,2)=0 atz=0
C(x,y,2)=0 atz=H K.2) éC(x, y, z) _0 atz— H

Representative vertical concentration profiles cor-
responding to these boundary types are shown in
Fig. 1. The Neumann boundary type states that the
earth’s surface and inversion layer are both imperme-
able. When a dispersing plume makes contact with
these boundaries, it reflects back into the atmosphere
(total reflection). In other words, no adsorption takes
place at the boundaries and all the contaminants must
therefore exist somewhere between 0 and H. The
Dirichlet boundary type, on the other hand, indicates
that contaminants are removed immediately upon
contact with the boundaries (Monin, 1959), resulting
in a significant concentration gradient in the vertical
direction (infinite adsorption). The mixed boundary
type II simulates a perfectly adsorbing ground and
a perfectly reflecting inversion layer, while the mixed
boundary type I (included for completeness) corres-
ponds to the reverse situation. It should be noted that
in reality, due to partial adsorption, the boundary
conditions (both at ground-level and the inversion
layer) should be of the Robin type, i.e., a combination
of partial reflection and partial adsorption (Calder,
1961; Smith, 1962; Scriven and Fisher, 1975; Horst,
1977, Horst and Slinn, 1984; Chrysikopoulos et al.,
1992b); hence, the actual concentrations near the

iz

Clx,p 2= Y Q'Gilx,z;xk, 28)Go(x, y; x5, 5) (1)
i=1

where the two dispersion factors, G} and G, are both
equal to zero if x < x§ (see the Appendix). The multi-
plication of these two factors (or sub-Green functions)
constitutes a Green’s function (Greenberg, 1971;
Stakgold, 1979), which can be viewed as the concen-
tration response at (x, y, z) due to a unit disturbance
(source) at (x§, y§, z5) (Deng and Horne, 1993). The
total concentration is therefore the sum of all the
responses from the n various sources. The sub-Green
functions corresponding to the four types of boundary
conditions are systematically presented in the follow-
ing sections. For convenience, each of the sub-Green
function equations will be designated by one or two
capital letters: ZR, ZA, and ZM will refer to vertical
sub-Green functions that assume total reflection, total
adsorption, and mixed boundary conditions, respective-
ly; and Y will refer to crosswind sub-Green functions.

4.1. Vertical sub-Green functions G.(x, z; x§, z5) of the
Neumann type (total reflection)

4.1.1. Boundeéd region (inversion layer). If an inver-
sion layer is present at height H and adsorption is
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H
z (a) (b)
zs
0
—w»c
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z (c) (d)
zs — -

————»c

Fig. . Representative concentration profiles in vertical direction for different boundary types: (a) Neumann-
type (total reflection); (b} Dirichlet-type (total adsorption); (c) mixed-type I; (d) mixed type Il

negligible at both the ground and the inversion
layer, the sub-Green function {(derived in the Appen-
dix) is

2+ 1
;H1+ 1

x—f+2

ali*#-1 (22

. z (2= f~+202 ) Zg\(afﬂ’lbl
) TG
x Z o

Gilx, z: x§, 28) = o

= J2 (4
o] HEE B ] gy
with
r= x 1; ﬁ 2 2

where J_, is the Bessel function of the first kind of
order —y; and 4;, the eigenvalues generated by the
homogeneous boundary condition at H, are the zeros
(or roots) of the following equation:

Joweri)=0. (3)

For a ground-level source, which 1s often of envir-
onmental interest, setting z§ = 0 in equation (ZR ),

and using the limiting form (equation (4)) for small
arguments of the Bessel function (Abramowitz and
Stegun, 1970) leads to equation (ZR,):

v

n
J, L S 0 4
(n) _"2\,1—(] ) asn— @)
i P x4+ 1
Gilx, 5336, 28 = 0) = —
Max—pB+2) (2 ~8r2)

ar( -2 +1 2+ 32
x—f+2

z (a—f+2)2
: ’"[‘f(ﬁ) ]
x Z d
Ji=1

';'?szu(’lj)

bla — f + 2)* i (x — xk)
Xexpl — 4aH"#*2

] (ZR;)

where I is the gamma function, defined by the follow-
ing integral:

Ty = jx- e dr (5)
[4]
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4.1.2. Unbounded region (no inversion layer). If
there is no inversion layer (i.e.. H — x ), the summa-
tion over j in equation {ZR,) becomes an integral
(Robson, 1983). By using the following identity
(Smith, 1957; Ozisik, 1968):

B 1 ki + k3
e U (k1) kat)tdr = mexp( - ‘4’(3 2)

kiky
x1u<,1k2> (6)
“n3y

equation (ZR,) reduces to equation (ZR;):

. o (ZZIS)(l'ﬂ)Z
GiAx. z; xg, zs5) =
(x. 2 x5, 25) b(x — ff + 2Kx — xg)

2a(zzg)la—ﬂ+2)3
x1_, -
bla — B+ 2% {x — x§)

I: a(za'ﬂ+2+zgiﬂ*2):|
xXexp —

bla— B+ 2P (x — x) (ZRs)

where I_, is the modified Bessel function of the first
kind of order — . Similar to the bounded region, for
a ground-level source in an unbounded atmosphere,
setting z& = 0 in equation (ZR;), and using the limit-
ing form (equation (7)) for small arguments of the
modified Bessel function {Abramowitz and Stegun,
1970) yields equation (ZR,):

- — ay g0 7
T o 7

Gilx, 2;xk, 2 = 0) = e o T

a tx+1u(x-g+2)
X -
|:b(oc — B+ 2% (x — x‘s)}

az* #72
xexpli-— bla — B+ 2)*(x — »‘é):|‘

4.2. Vertical sub-Green functions GL(x, z: x§, z§) of the
Dirichlet type (total adsorption)

(ZR4)

4.2.1. Bounded region (inversion layer). For a case
where total adsorption occurs at both boundaries, the
vertical sub-Green function (derived in the Appendix)
becomes:

; . a—f=2 ,
G:(x, z; x5, 25) = T (zzg)! A2
/2B 2 A2
] )
X Z 2
j=1 (4

blox— B + 224 (x — x4
xeXp[— o Py P ‘S)} (ZA,)

4aH>" k2

where J2, |(4,) can be replaced by either J; _,(4;) or
J2(4;) (see Appendix). The eigenvalues of the system,
4,. are the roots of the following equation:

1,25 = 0. ®)

The differences between the sub-Green function for
this case and that of the Neumann case (equa-
tion (ZR,)) are the order of the Bessel function (u vs
—u), the square term in the denominator (4 + 1 vs
—u). no first term before the summation, and the
eigenvalue equation.

4.2.2. Unbounded region (no inversion layer). Let-
ting H — oo in equation (ZA,) and using identity (6)
lead to the sub-Green function for the Dirichlet un-
bounded region:

(ZZg)“ —$)2

bla — B+ 2)(x — x&)

2a(zzi)e A2
x 1, -
blo — f + 2% (x — xi)

e a(zafﬁ+2+zézfﬂ+2)
X — = .
Pl " ha— B+ 22(x — x)

Gilx. z; x5, z5) =

(ZA2)

Equation (ZA,) differs from equation (ZR ;) only in
the order of the modified Bessel function (u vs — p).
The sub-Green function for a ground-level release
under a Dirichlet-type boundary condition cannot be
found using this type of approach. Yih (1952) and
Panchev (1985) presented solutions for a similar (sur-
face release) problem with a constant (but non-zero)
Dirichlet boundary condition at the ground. Also, it is
important that equation (ZA;) not be used for the
constant turbulent flux layer (i.. § = 1 or u = 0) com-
monly found in neutral stability atmosphere, because
an incorrect boundary behavior will be obtained, due
to the fact that at the origin, the modified Bessel
function of the first kind of zero order is different from
its other orders (i.e., I4(0) = 1, whereas [,(0) = 0 for
u # 0).

4.3. Vertical sub-Green functions Gi(x, z; x&, z&) of the
mixed type I and 11

The sub-Green functions for a bounded region with
the mixed type I and the mixed type II boundary
conditions have also been derived and are listed,
along with the Neumann and Dirichlet boundary
types, in Table 1 for brevity and comparison. By
inspection, it can be confirmed that the four sub-
Green functions in Table 1 exhibit the correct asymp-
totic behavior (i.e., zero flux or zero concentration) at
the boundaries. In addition, if the domain is un-
bounded, equations (ZM,) and (ZM,) reduce to equa-
tions (ZR;) and (ZA,), respectively, while for
a ground-level release, equation (ZM;) reduces to
equation (ZR,) as described previously.



244 J-S. LIN and L. M. HILDEMANN

Table 1. Vertical sub-Green functions within a bounded region for different boundary types

Type Conditions Sub-Green function and eigenvalues
Neumann aC(x, y, . o +1
K.(2) —-(a—}z—) =0 at z=0 Equation (ZR,): Gi(x, z; x, z§) = %
0z a
éC(x, y,z) a=B+2
K.(z) — = 0 at z=H —Eer (z25)0 ~Bn2
BRCEEP U aid LN, Liae
i=1 Jz‘u('{j)
blx — B+ 2?23 (x — x§)
xexp| — P T
J—y+ l(ij) =0
Dirichlet C(x,y,z)=0 at z=0 Equation (ZA,): Gi(x, z; x&, z&)
Cix.y,z)=0 at z=H a—f+2 1-p2
=T (zzf)! P
5 BLAE LD, (0
X .
j=1 -]Z+ 1(/“)')
bl — B+ 2* A (x — x§)
XCXP - 4aHufﬂ+2
J,(A4)=0
Mixed 1 éC(x. y,2) . ) o
K.,(z) T =0 at z=0 Equation (ZM,):  Gi(x, z; x, z§)
Cix,y,2)=0 at z=H a—p+2 1o 2
=T (zz§)0 P
52 Ll Dy
x
j=1 -]z,n 1(}*;')
bia — B+ 923 x — x)
xe -
*P 4aH* P2
J_4)=0
Mixed II Cix,y,z20=0 at z=0 Equation (ZM;):  Gi(x, z; x§, z&)
aC{x, y, z) a—f+2 .
KAiz) ——=0 at z=H =W(szs)u B2

x J“[ij(ﬁ)(ufﬂ+ 2)(2]_,“[111,(;;)(:734-2;/2]

5>

i=1 J:()‘j)
bla— B+ 2)* A} (x — xE)
xexpl — 4aHzfﬂ+2
Jia(4) =0

4.4. Crosswind sub-Green functions G (x, y; x§, y&)

The crosswind sub-Green function takes the follow-
ing form (Yeh, 1975; details in the Appendix):

o ‘a
e
’ P Jan(X — X
il
A(X — X1)

with g
Xi=[f(r)dr

X
X = [flodr,
S Xc
where x. is some reference location in Cartesian coor-
dinates. Since the power in the exponential term is 2,
the crosswind concentrations are symmetrical with

respect to y&.

4.4.1. Point sowrce (Q'=(Q.). All the sub-Green
functions presented above are exact solutions to the

steady-state atmospheric diffusion equation, assuming
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that the lateral eddy diffusivity and wind speed have
the same but arbitrary power-law variation with
height, and that the lateral eddy diffusion also de-
pends on the downwind distance via f(x). To find an
explicit expression for f (x), the two parameters can be
further related to each other as follows (as is done
frequently in air dispersion modeling):
2

Kyzéb'%, (10}

Substituting equation (10} into the power-law equa-
tion for K, gives f(x) =4ado?/dx. For multiple
source modeling, we will assume that f(x) depends on
the relative distance between the source and the loca-
tion of interest (i.e., x — x§), but not on the downwind
distance alone. The integration limits of X — X} in
equation (9) then become from 0 to x — x£ (instead of
from x to x&). Carrying out the integration, a point
source sub-Green function is obtained:

. o 1
Gyx, y; x5, y§) = ———
' \/Zcry(x — Xg)

. Q32
x exp[ — %} {Yy)
20,{x — xg)
where g,(x — x{) and a}(x — x§) are the standard de-
viation (diffusion coefficient) and the mean square par-
ticle displacement evaluated at x — x§, respectively.
4.4.2. Finite line source (Q' = Q!). A line source can
be considered as a superposition of point sources,
each having an emission strength Q,d|q| (Csanady,
1972), where @, is the unit strength and d |q| is a differ-
ential source length. Thus, for a continuous finite line
source extending from (xg;,, Vsi,» Zs1,) t0 (Xs1,, Vsi,» Zs1,)
in Cartesian coordinates, the summation in equa-
tion (1) becomes an integration over the length of the
line source, B. For example. for the point source
kernel (Y,):

B
C(x,y,2) = Q, [ Gax, 21 x5(q), z5(q))
0

1
X

\/’er,,(x — (xs1q))

(v — ys(@) ,
— T 11
" e"p[ 207x - Xs(‘l))j| diaf - 11h

where
B =|q|
= (g1, = xg1,)% + (s, — vei,)? + (291, — zg,)?

(12)

The above integral can be carried out explicitly for
a few simplified cases. If the line source is perpendicu-
lar to the wind direction (x5, = xg, = Xxs), and has
a constant elevation (zg;, = zg), = z5), G, can be pulled
out of the integral and the result of the integration
yields a sub-Green function (equation (Y ,)). Note that

index i is again included below to indicate the ith line
source, and erf represents the error function,
defined by (13):

. L] Ve, =Y
Gilx, yix§. vg) == erf(——z——,)
B! [ \/5 o,(x — x§)

ygl -y
—erf{ ———— Y
“ <\/5 a,(x — x§)>j| 2

2",
erf(y) = —=fe " dr.
70

(13)

Furthermore, if the x-axis passes through the mid-
points of B' (i.e., &, = B2 and y§, = — B'/2), equa-
tion (Y,) becomes:

| B2 -y
Gy(x, y: x5, vs) = | erf| —————
2 V/5 o,(x — xs)

B2 )
ﬁay(x — x8)

4.4.3. Infinite line source (Q' = Q.). For continuous
infinite line sources, y§12 = 0, y§, = — %0, and equa-
tion (Y ) reduces to

(Ys)

(Yd)

This is equivalent to solving the two-dimensional
case:

Gi(x, y; x5, y5) = L.

Vi ox  éz 0z

AC(x.z) %, (K,(z) oC(x, z))

n
+ ¥ 8x — xh)o(z — z5).
=1

4.44. Finite area source (Q' = Q!). For an area
source extending from yg, to yg, in the crosswind
direction and from xg, to X, in the downwind direc-
tion, the concentration at (x, y, z) is calculated via the

superposition of line sources:

C(x.y.2) = Q,G.(x, z; x§, z5) | G,(Y2)dIq

*sn

(14)

where @, is the emission strength per unit area, d|g] is
the differential downwind source length, Gi(Y,) is
equation (Y,), and G,(x, z; x§, z&) is any vertical sub-
Green function described in the previous sections. The
integral in equation (14) is a sub-Green function for an
area release:
. R X813
Gyix, yi x5, y8) = | Gy(Y2)dlq).

xs1y

(Ys)

4.5. Gaussian plume models

The Gaussian plume equation is a special case
where wind speed and eddy diffusivities are assumed
constant with height (ie, a= =0, u=14). For
example, consider total reflection or total adsorption
in a bounded region where an inversion layer is at H.
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The following identities for a Bessel function of order
+4 can be used:

Jyln)= |[—singy (15)

N

J;Q(n)z\/%cosn. (16)
The eigenv.ilue equations (3) and (8) both give 4; = jn.
and equation (ZR,) and equation (ZA,) reduce to
equation (ZG,) (as appears in Seinfeld, 1986) and
equation (ZG,), respectively (where ZG denotes a ver-
tical sub-Green function of the Gaussian type):

. )
G (X Z, ’CS, ZS) = ? H Z (]—:72)
x cos< ) I: (x _ xS)]. (ZGy)
2 X
Gix, z; xs,zs)——H g n(%)
X sm( > I: T - x‘S)] (ZG,)

Likewise, for the mixed boundary types, equations
(ZM,) and (ZM;) reduce to equations (ZG;) and
(ZGy,) (listed in Table 2), respectively. For an un-
bounded region, identities for a modified Bessel func-
tion of order + 4 can be used:

2 2 " -n
1—§(n)=\/n:ncoshrr=/n:n<%) (17
\/:smhn—f e ” (18)

Using equations (17) and (18), equation (ZR;) and
equation (ZA,) reduce to

Gix, z; x§, z5) =

afz — z§)* ]

1
VA4nab(x — xt) {exp[— 4b(x — x§)

N a(z + z£)?
exp| ———m—
+exp 4b(x — xs5)
where the positive sign corresponds to the total reflec-
tion case while the negative sign corresponds to the
total adsorption case. Combining equation (ZGs),

equation (Y,) and point source strength @, yields the
familiar Gaussian plume equation.

(Z2Gs)

Table 2. Vertical sub-Green functions within a bounded region for Gaussian plume types®

-

Type Conditions Sub-Green function
8C(x, y, z
Neumann K, ——(éy—) =0 at z=0
Oz
LRk Equation (ZGy): G! )=t
2 P = at z = quation (ZG, (x,z; x&, z& At
i jmz jmzl bj*m?(x — x§)
x ¥ cos{— |cos{— )Jexp| — —————
ERRV] ") aH?
Dirichlet Cix,y,z)=0 at z=0
Cix.y,z)=0 at z=H . ) oo
Equation (ZG,): G,(x, z; x§, z§) = —
aH
i C[jnz\ | [jnzé bj?n?(x — x{)
x Y sin[— }Jsin{ — Jexp| — ——pr
=N\ H " )P aH?
. 0C(x. y, .
Mixed 1 K,(—(:_—'t—z) =0 at z=0 Equation (ZG;):
C(x.y,2)=0 at z=H 2 0x G+ %nz U+ $)nz
Glx =—
L, z; xE, 28) i g m cos i
e bU + 2P (x — x§)
- VTRV S
P aH?
Mixed 11 Cix, y,2)=0 at z=0 Equation (ZG,):
0C(x, ¥, z ) ) 2z i+ 4 . j + L
K,i—t—) =0 at z=H Gaix, z; x5, z§) = — Z sin Ut mz sin U + Pz
aH 5, H H

-z

b(j + 12 (x — xb)
aH?

xexpl: —

® This table (revised from Lin and Hildemann, 1995) is the Gaussian plume counterpart (i.c., 2 = f = 0, u = $) of Table 1.
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The vertical sub-Green functions for the mixed
boundary types, equation (ZM,) and equation (ZM)
in Table 1, can also be used to derive the Gaussian
plume equation using the same approach.

5. DISCUSSION

With the solution of the atmospheric diffusion
equation conveniently breaking down into three
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components—a source term, a vertical sub-Green
function, and a crosswind sub-Green function—al-
most all of the dispersion models currently existing
which use height-varying wind speed and eddy dif-
fusivities can be obtained by combining these func-
tions. Table 3 summarizes the existing analytical air
dispersion equations which can be represented as
special cases of the general solutions given in this
paper. For example, the two-dimensional kernel

Table 3. Form and assumptions of existing steady-state analytical air dispersion models, as simplified from the general
equation (1), C(x, y, 2) = 3.7_, Q'Gilx, z: x§. z§) G} (x, y; x§, y&), in present work®

Concentration Assumptions References
QO xZR(x Y, (1) Two dimensions Equation (6), (10), (11) in Yih (1952)
Equation (8.11) in Sutton (1953)°
{2) Ground-level infinite line source Equation (2.16) in Walters (1957)
Equation (10.117) in Monin and Yaglom (1971)
(3) S = Q,4(x)d(z) Equation (34) in Liu and Seinfeld (1975)
Equation (6) in van Ulden (1978)
{4) No inversion layer Equation (6) in Melli and Runca (1979)
Equation (3.20) in Pasquill and Smith (1983)
{5) Total reflection at z = Equation (5.17) in Panchev (1985)
Equation (11b) in Koch (1989)"
Q,xZR3x Y, (1) Two dimensions Equation (2.17) in Walters (1957)
(2) Elevated infinite line source Equation (12) in Huang (1979)
(3) S =0,3(x)d(z - z5)
(4) No inversion layer
(5) Total reflection at z =0
Q, xZR;xY, (1) Two dimensions Equation (47) in Rounds (1955)°
(2) Elevated infinite line source Equation (8i) in Yeh and Tsai (1976)°
(3) §$ = 0,8(x)8(z — z5) Equation (2) in Demuth (1978)°
(4) Inversion layer at H Equation (17) in Robson (1983)°
(5) Total reflectionat z =0, z =
Q,xZG3xY; (1) Gaussian plume Appendix in Csanady (1972)
(2) Ground-level finite line source Equation (10.16) in Dobbins (1979)
(3) S = Q,(x)3(1)é(2)
(4) No inversion layer
(5) Total reflection at z =0
Qo xZR,x Y, (1) Three dimensions Equation (9) in Huang (1979)
(2) Ground-level point source Equation (4) in Lehning et al. (1994)
() § = 0,3(99(1)8(z)
(4) No inversion layer
(5) Total reflection at z =0
0, xZR5sx Y, (1) Three dimensions Berlyand (1975)
(2) Elevated point source Equation (6) in Huang (1979)
(3) § = Qp0(x)o(y)(z — z5) Equation (2) in Hinrichsen (1986)
(4) No inversion layer
(5) Total reflection at z =
Q. xZR; xY, (1) Three dimensions Equation (23), (12) in Yeh (1975)°
(2) Elevated point source Equation (4b), (5) in Tirabassi et al. (1986)"
(3) § = Q,0(x)o(y)(z — z5) Tirabassi (1989)° p. 21
(4) Inversion layer at H
(5) Total reflectionatz =0,z =H
Q. xZR,x Y5 (1) Three dimensions Equation (9a) in Chrysikopoulos et al. (1992a);

(2) Ground-level area source

Equation (29) in Chrysikopoulos et al. (1992b)

(3) Source not necessarily at the origin®

(4) No inversion layer
(5) Partial adsorption at z = 0

* Except for the Gaussian-type, all the models cited only account for single isolated source {i.c., n = 1).
® Typographical errors are found in some of the equations in this paper.
¢ For all the other models cited in this table, the source is located at the origin (i.e., xg = 0, ys = 0, with or without zg = 0);

1 — B,
for this model, S = Q, j::f ",

3(x — xs)3(y ~ ys)d(z — z5)dys dxs.
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(ZR4) x(Y4) is the well-known Roberts solution
(unpublished paper, cited in Monin and Yaglom,
1971) for a ground-level infinite line source, which
was independently derived by Yih (1952) using a sim-
ilarity method and by Walters (1957) using the Han-
kel transform. This kernel has been cited extensively
in the literature (e.g., Sutton, 1953; Pasquill and
Smith, 1983; Panchev, 1985) and has been widely
used in air dispersion studies (Liu and Seinfeld, 1975;
van Ulden, 1978; Melli and Runca, 1979; Koch,
1989). The three-dimensional kernel (ZR;) x(Y,) is
the equation developed by Berlyand (1975) and
Huang (1979), and is the analytical model used in
Hinrichsen’s (1986) comparison study with Gaussian
models. Equation (ZR,)x(Ys) is the three-dimen-
sional model utilized by Chrysikopoulos and
coworkers (1992a, b), while the model used by Ti-
rabassi and coworkers (1986, 1989) is the combination
of (ZR,) and (Y,).

As is indicated in Table 3, virtually all of the exist-
ing analytical dispersion models inherently assume
a perfectly reflecting ground. For contaminants that
interact strongly with the earth’s surface, such as
H,0, absorption into water or SO, uptake by veg-
etation, partial adsorption or deposition is a signifi-
cant removal process. Hence, these existing models
may tend to overestimate airborne concentrations
near ground-level. On the other hand, very few of
these models include the effect of the inversion layer,
so concentrations may be underestimated for elevated
releases or for a low inversion height.

J-S. LIN and L. M. HILDEMANN

6. APPLICATIONS

To illustrate three-dimensional dispersion for mul-
tiple sources, an area rarely explored outside of the
Gaussian plume equation, consider a simple case
where two ground-level point sources with equal
strength Q are located at (x§ = 10m, y§ =0m, z§ =
0m)and (x3 = 100 m, y? = 0 m, z§ = 0 m) (90 m apart
in the downwind direction) in a free and unbounded
atmosphere (H — o). Assuming the pollutant is total-
ly reflected, equation (1) with kernel (ZR4) x(Y,) and
n = 2 comprise the solution for this case. For illustra-
tive purposes, meteorological input parameters are
taken from Huang (1979) and Chrysikopoulos and co-
workers (1992a): o = 0.29, § = 0.45, a = 1.5 (msec ™)
(m~2%, b = 0.025 (m?sec ') (m~%*%), and o,(x) =
0.32x*/'*®_Figure 2 shows the normalized vertical
concentration profiles due solely to the first source at
(x4 = 10m, y! =0m, z§ = 0m). At short downwind
distances, due to the low wind speed and eddy diffu-
sion coefficients near ground level, plume spreading in
the vertical direction is limited. Diminishing concen-
trations with increasing distance result primarily from
horizontal spreading. Because of this, contaminant
levels near ground level (i.e. near breathing level) are
quite high, making human exposure a major concern
near the source. Only beyond a certain distance
downwind (x = 70 m) does the plume spread notice-
ably in the vertical direction (Fig. 2b). The zero gradi-
ent behavior at ground level, expected from equation
{ZR.,). can be seen at all downwind locations (Fig. 2a).

g
3:0-15 T T T T T T T
x
o
§ o} ]
4
§ “x=30m
§0.05F |
'8 - ~--X§5_Qm o
8 pooxslmTo-
§ [ XM= S,
E 0 1 1 i f SRR -y
] 0 0.5 1 1.5 2 2.5 3 3.5 4
<  (meters)
.3
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17 . , . , , — ,

o
[

normalized concentration C(x,0,2)/Q
o
»

6 6.5 7 7.5 8
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Fig. 2. Varnation of normalized centerline concentration, C(x, 0, z)/Q, with height due to a single source at
(10,0,0m): {(a) 0 <z<4m;(b) 4<z<8m.
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Fig. 3. Variation of normalized breathing level concentration on the centerline, C(x,0,2 m)/Q, with
downwind distance due to two sources at (10, 0, 0 m) and (100, 0, 0 m).

Figure 3 shows the normalized “breathing level”
(z = 2 m) concentrations directly downwind of the
two sources. The dashed lines represent the individual
source contributions, while the solid line shows the
sum of the two sources. Between x = 0 and 100 m,
only the first plume contributes to the concentration:
it initially rises and builds up to a maximum level due
to turbulent mixing, and then begins decreasing be-
cause of continued vertical and horizontal spreading.
At x = 100 m, the concentration again rises sharply,
as the emissions from the first plume join with the
second plume.

To examine how plumes disperse in the horizontal
plane, consider a second case where two ground-level
point sources with equal strength Q are located at
(x{=10m, y{ = —20m, z{ =0m) and (x{ = 10 m,
y¢=20m, z{ =0m) (40 m apart in the crosswind
direction). Normalized breathing level concentrations
in the crosswind direction at two downwind distances,
x =150 m and x = 500 m, are plotted in Fig. 4 for
this case, assuming the pollutant is totally reflected.
The resulting contour profiles in the x-y plane
(z = 2 m plane) are shown in Fig. 5. The two plumes
in fact disperse independently, as can be seen from the
two distinct Gaussian shapes shown for x = 150 m in
Fig. 4, and also from the two concentration “eyes”
seen in Fig. 5. As the plumes travel further downwind,
gradual spreading in the horizontal direction causes
the plume concentrations to overlap with each other
until a single Gaussian shape is finally formed. An

interesting result of the overlap is that, as the down-
wind distance increases, the locations at which the
crosswind maxima occur shift towards the centerline.
As a result, the y location that is equidistant between
these two sources will experience the highest level of
exposure sufficiently far downwind.

7. SUMMARY

Three-dimensional analytical solutions of the at-
mospheric diffusion equation with height-dependent
wind speed and eddy diffusivities can be conveniently
broken down into three components: a source
strength, a crosswind dispersion factor, and a vertical
dispersion factor. The two dispersion factors together
constitute a Green’s function, which can be viewed as
the concentration response due to a unit disturbance
(source). The Green'’s functions corresponding to dif-
ferent homogeneous boundary types are derived in
a systematic fashion for point, line and area sources.
A methodology based on the superposition of Green’s
functions is proposed for multiple source dispersion.
By choosing appropriate sub-Green functions not
only can multiple point, line, and area releases be
included, but geographically varying boundary types
within the same domain can also be considered (Yeh
and Brutsaert, 1970; 1971). The methodology present-
ed is particularly suitable for the evaluation of human
exposure to pollutants from multiple sources.
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Fig. 4. Variation of normalized breathing level concentration, C(x, y, 2 m)/Q. with crosswind distance due to two side-by-
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Fig. 5. Normalized breathing level concentration contours, C(x, y,2)/Q, in the x—y plane (z = 2m plane) due to two
side-by-side ground-level sources at (10, —20, 0 m) and (10, 20, 0 m).
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APPENDIX

The sub-Green function G,(x, z; xg, zg) within a bounded
region for different boundary types will be derived, as well as
the sub-Green function G,(x, y; xs, ys). Using the Green's
function method (Stakgold, 1968; Greenberg, 1971; Yeh,
1975), the solution of the steady-state atmospheric diffusion
equation with homogeneous boundary conditions can be
expressed as

Cix,y,2) = G.(xg. 20: X. 2)G(Xg, Vo5 X. V)

.-

:“

x

O e %

X Qpdl(xo — X5)(yg — y5)d{zo — z5)dzodyo d
= Qsz(xs 2z Xs, ZS)G}.[X, ,vs Xs, }S]

where G,(xo, Zo; X, 2) X Gy(Xo, yo; X, y) is the Green’s func-
tion that satisfies the following pairs of adjoint partial differ-
ential equations (Morse and Feshbach, 1953; Friedman,
1990) if o = y:

¢ 0G(xg, 201 X, 2 6G,(xg, 20, X, 2)
bzt + az}

Zo 0z, éx
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= —dlxo —x)0(zo —2) for xo < x (A1)
G.(xg,20; %,2) =0 for xo > x (A2)

J(xg) PZGy(x;;érO; * ) +a aG"(x[;x}:]; * )
= —d{xg— x)8(yp —y) for xo < x (A3)
G,(x0,¥0; %, ) =0 for x4 > x. (Ad)

Though physically impossible, the adjoint equations
(A1)-(A4) mathematically describe, in a similar manner, the
diffusion process prior to (ic., as time decreases) a pollut-
ant pulse being instantaneously applied at the location
(yo, Zo) = (3, 2) at a time x, = x. Alternatively, they can be
viewed as steady-state turbulent diffusion with wind blowing
in the negative x, direction. Thus, G.(xo,zo;X,2) and
G,(xo, yo: X, ¥) are both zero for x, > x. Note that x,, yo,
and z, have been used as independent variables instead of
X. y, and z so that we can end up with C(x, y, z) after integra-
tion (Greenberg, 1971).

For any location x,, equations (A1)-(A4) above can in-
stead be expressed in the following way, which is more
amenable to solution (equations (A1) and (A2) are equivalent
to (AS) and (A6), while equations (A3) and (A4) are equiva-
lent to (A7) and (A8)):

; (Abzf; OGz(xo: Z0; X, 2)> ta G, (x0.20,%,2) _ o (AS)
Czy\ 0zo Xo
lim az§G.(xo. zo; X, 2) = 6{(zo — 2) (A6)
A2G o {Xo, Vo3 X, ¥ 0G,(xo, Voi X, ¥
f(w( (xo 30 X y)+af (X0, Yos X ”:0 (A7)
4% éx,
lim G,(xq, yo; X, y) = d(yo — ¥ (A8)
XX

Vertical sub-Green function G,(xo, Zo; X, Z)

Equations (A5) and (A6) with the Neumann boundary
conditions can be solved via a Laplace transform, as briefly
described by Demuth (1978). The method involves the resi-
due theorem and calculations of poles in the complex plane,
which may not be familiar to readers. Here we present an
alternative, better-known solution technique: separation of
variables. Setting G,(xq, zo) = M(z,) N(x,), substituting into
(A35) yields a pair of ordinary differential equations (A9) and
(A10) with a separation constant x2:

dZM(Z()) B dM(z,) a 5.2
= S5 P kIM(z) =0 (A9
a2 2 dzg +bzo K*M(zo) (A9)
dN
o) _ 2 gy, (A10)
N(xo}

By transforming the variable for M(z,) = z{! /2 m followed

by t = z{# 78272 equation (A9) becomes (411), whose solu-

tion consists of Bessel functions, with two constants C, and

C, to be determined:

{a/b)?t? — [(1 — BY2]*
[ — 8+ 2)/2)°

m(t) = Cydy(wt) + C1J_ ot);
_a-p2 b
g+ “Tu-pr22

In equation (A12), u is written as such that it is positive for
typical meteorological conditions, and is assumed to be

em +tm' +

m=0 (All)

(A12)
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a non-integer so that J, and J_, are linearly independent.
The assumption can be relaxed because, as will be seen, only
J, or J_, but not both, appears in the final solution.
Substituting equation (A12) into M(z,) gives

M(zo) = 26 “972m = ol "0 2[C ), (w2l P2

+ Cod (wz8 DY) (A13)

Equation (A10) is a first-order ordinary differential equation.
Direct integration obtains its solution (C; is a constant):

N(XO} — Cje*azlx*x(,y

blx — B ~ 2P wix —
:Cjexp[A (2— 8 4luw(¥ V()']' (Al4)

Combining M(z,) and N(x,) yields G, (where C, and C; are
new constants):
G0, 20) = 28 “P2[Cod (w2 22

+ Csd oz P72 0)]

bla — f + Pwlix —
xexp|: b 4) W “’)}. (A15)
a

Neumann boundary type. The Neumann boundary condi-
tion at z, = 0 requires the first derivative of equation (A15)
to disappear, which requires C4 to be zero. The boundary
condition at z, = H gives the following equation:

wH(:zfp+Z),2Jr u((UH[afB‘Z)Q) + /_1.] u((quafﬂ~2),’2)

= —@HC PR (H® B =0, (A16)
In equation (A16) . the following recurrence formula (Bow-
man, 1958; Tranter, 1968) has been used:

tJos (1) = vl 1) — tJ (7). (A1

Therefore, the resulting eigenvalue equation becomes

J olwH® ATy =g (A18)
The general solution of G,(x,, zy) can then be expanded as
the Dini series (Tranter, 1968) or the Fourier—Bessel series of
the second type (Tolstov, 1976) using the eigenfunctions
J_, with coefficients W, and W; to be determined. The
reason that initial term W, appears in equation (A19) is that
w =0 is a double root of equation (A16) (Bowman, 1958);
i.e., it is the trivial solution to equation (A16) and is also the
first root (eigenvalue) of equation (A18).

G.(x0,20) = Wy + f(al. o Z VV}'J'u‘U))Z(UJ Beazy
=1

 blx— B+ 2P —
xeXp[— A 4) gl x‘”}. (A19)
a

Invoking condition (A6) gives:

lim az§G,(xq, zo; X, 2
Xp=*X

x
(12 , o B+212,
= azj W, + azjzy Y Wi ez ? )
i=t

=0(zg — 2). (A20)
Multiplying equation (A20) by [(« — § + 2)/2]dz,, integrat-
ing from 0 to H, and using the identity (A21) (Bowman, 1958)
leaves only the W, term (all W, disappear because

g = aH® P22 are the roots of J_, 4 1):

¢ Jv l_.
[ on)dr = —% (A21)
ld i
o+ 1
0= F‘ (A22)

Likewise, multiplying equation (A20) by [(x — 8 + 2)/2]
2y P iy 2Ydz,, integrating from 0 to H, and using
the orthogonality of the eigenfunctions given in equation
(A23)(Tranter, 1968; Abramowitz and Stegun, 1970; Tolstov,
1976) yields W; (W, disappears because of (A21)):

If o is the root of oJ {gc) + hJ,(o¢) = 0, then

jtJ (o1} (o;1)dt

0y
0. if i#])
] Hi#]) (A23)
—(c2h? + o] — v o). if i=).
20;
a—p /2
X B+2 TR .L“(wjz( + 212y (A2

i aH*> 8+2 Jgu(ijla*ﬂ+2)/2)'
Finally, substituting equations (A24) and (A22) into (A19),
and setting 4; = w;H® #*2'2 gjves equation (ZR,).

Dirichlet and mixed boundary types. The derivations for
the Dirichlet boundary type is similar, except in equa-
tion (A1S5), C5 disappears instead of C,, the eigenvalue equa-
tion is equation (8) in the text instead of (A18), no W, term
appears in equation (A19) (i.e.,, a Fourier—Bessel series of the
first type is obtained), and the orthogonality condition is
equation (A25) (Tranter, 1968; Abramowitz and Stegun,
1970; Tolstov, 1976) instead of equation (A23):

If ¢ is the root of J,(oc) = 0, then

[RENCRINRECHIN

o

0. ifi#j
{2 o2 2
—Jile0) = =T o)==

5 5 5 JE (o). Q=]

(A25)

For mixed boundary types, the solution procedure utilizes
the same approach, and hence no further details are con-
sidered necessary.

Crosswind sub-Green function G,(Xo, Yo; X, ¥)

The crosswind sub-Green function G,(xo, yo; x, y) can
be obtained by Fourier transform. Let G,(x,, p; x, y) be the
Fourier transformation of G,(xo, yo; X, y} with respect to
yo (where p is the Fourier variable):

N 1 = .
Gy(xp.pix, V) =—= [ e "P°G,(xq, yo; X, dyo.

15
(A26)

]

X

\

Taking the Fourier transform of equation (A7) yields a first-
order ordinary differential equation (A27). Its solution by
direct integration is equation (A28) with G,.(xc, p; X, y) to be
determined:

dG, N
a——f(xo}p*G, =0

A27
ax, (A27)
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G,ixo, pix vy =Gylx. psx, y | I,
y{Xo, pi X, v} X Py X, y) G,y (Xor Voi X, §) = —= J- elpyoGy(xo,P)dp

’pl X0
xexp[: § f‘l’o)d‘[oj|. (A28)

< = L jf eipyo{Le*ipy
Taking the Fourier transform of equation (A8) gives (A29), v’/2” ~x 2n
which can be used to determine G,(x., p; x, y) P o
A . xcxp[A-—< f(ro)dzo — 5f(fo)d‘fo>]}dl’
lim Gy(xp.psx )= —=¢ " (A29) a \ x X
Xp=x V’/Zn T )
| ) =51 CXP[“IP(}’—}’O)
Gylxe,pix.y)=—=e 'nyexp["% ff(To)d‘to:|< {A30) o
V2 xe

PLye %o
- (jf(fo)dfo - 5f(10)d10>]dp
Finally, substituting equation (A30) into (A28), taking the @ \x S

inverse transformation, and using the well-known formula /a
shown as equation (A31) (Greenberg, 1971; Zauderer. 1989) i A4
gives G,(xo. yo; X, ¥} {equation {A32)): A% f(o)dto — 72 (20) dto)
— 2
| . } 1 SN xexp|:v = aly y(]x) ] (A32)
— | exp(—ipl — p*&)dp = ﬁ,_exp( - (A31) 4(f3 f(ro)dto — [0S (z0)dTo)
n Jame o\ 4 ‘ ‘



